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Abstract

While solar energy has definite advantages over conventional power sources such
as oil and coal, its unpredictable nature poses a number of potential problems for
the electrical grid. With conventional generators, grid operators can relatively easily
increase production to meet demand. However, the unpredictable nature of solar energy
can make it difficult to properly balance production and demand which can lead to
grid instability. Accurate solar irradiance forecasts can reduce the unpredictability and
help to ensure a stable grid.

In this paper we present a method for short-term solar irradiance forecasting using
gridded global horizontal irradiance (GHI) data, estimated from satellite images. We
use this data to first create a simple linear regression model with a single predictor
variable. We then discuss various methods to extend and improve the model. We
found that adding predictor variables and partitioning the data to create multiple
models both reduced prediction errors under certain circumstances. However, both
these techniques were outperformed by applying a data transformation before training
the linear regression model.

We also discuss a set of methods for identifying “rare weather events” by discretizing
Global Forecast System (GFS) data by transforming the data using either principal
component analysis or a discrete wavelet transform, then discarding and round the
transformed data. While the current work only investigates identifying past events,
future work could investigate predicting these events and using those predictions to
improve solar irradiance forecasts.
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1 Introduction

Using renewable energy sources such as solar and wind have obvious benefits for the environ-
ment. However, they can cause technical problems for the electrical grid and its operators.
This is particularly true for Hawaii which is not only geographically isolated from the rest
of the United States, but even within the state, each island’s electrical grid is isolated from
the others. The fact that each grid is isolated means that each grid must be self-sufficient
and cannot borrow power from nearby interconnected grids.

It is the job of electrical grid operators to ensure that the amount of power being generated
matches the needs of the consumers. Meanwhile, they also want to minimize the amount of
surplus power being generated in order to minimize costs. Without factoring in renewable
energy, the main concerns are the consumer demand and the amount of energy that can
be produced by their generators as well as the amount of time it takes for those generators
to start up and reach full capacity. The output of their generators is obviously known in
advance and the general patterns of consumer demand are also well understood. There are of
course exceptions which might cause spikes or drops in usage such as high heat and humidity
leading to increased air conditioner usage.

When we also consider renewable energy, there is much more uncertainty involved since
the amount of power generated is tied to the weather. This means that even if consumer
usage was perfectly predictable, an unexpected drop in sunlight — and therefore power
generated by solar farms and rooftop photovoltaic systems — would make it difficult for grid
operators to meet the consumer demand and ensure grid stability. Accurate solar forecasts
can help reduce uncertainty and ensure grid stability.

This paper presents a statistical method, using linear regression models, to make approx-
imately 1-hour ahead solar irradiance forecasts from global horizontal irradiance data which
has been estimated from satellite images. We start with a simple model using a single predic-
tor variable and extend the model by including additional predictor variables, partitioning
the data to creating multiple models, and transforming the data to account for differences
at different times of day and different locations.

We also discuss identifying “rare weather events” from Global Forecast System data by
discretizing the data. The current work only focuses on identifying past events, but the goal
is to eventually incorporate rare events into the solar forecasts.

2 Related Work

There is a large body of work which has investigated solar irradiance forecasting with forecast
horizons ranging from 5 minutes to 15 days. These methods can generally be broadly grouped
into one of three different categories [7]. The first category consists of statistical models which
are based on historical solar irradiance data. Another set of methods are based around cloud
motion determined either from satellite images or from ground-based sky images. The last
type of solar forecasting is based on a technique known as numerical weather prediction
which uses observed weather variables as input into computer models which try to forecast
the future state of the weather. A fourth category of hybrid models also exists.

Each of these categories of methods tend to perform better for different timescales. Sta-
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tistical and cloud motion based methods are typically used for forecasts up to 6 hours,
while numerical weather prediction models perform better beyond the 6 hour range. These
methods also operate at different spatial resolution. While numerical weather prediction
can provide more accurate forecasts at larger timescales, it comes at the cost of much lower
spatial resolution. Rather than operating at resolutions of 1 kilometer or less, numerical
weather prediction is limited to resolutions on the order of 10 to 100 kilometers.

Statistical models can be further divided into linear and non-linear models. The simplest
linear model is known as the persistence model or näıve predictor model and simply assumes
that the solar irradiance at time t is equal to the irradiance at t−n. This method is sometimes
used as a baseline for comparison to other methods. Other examples of linear models are
autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA)
[1, 14], and coupled autoregressive and dymical system (CARDS) [15]. Non-linear methods
include artificial neural networks [10, 13, 18] and wavelet neural networks [3, 20].

Besides daily and annual irradiance patterns, which are deterministic based on the rota-
tion and revolution of the earth, cloud cover is the main influence on solar irradiance at the
surface. This is the basis for cloud motion based methods. These methods use either satel-
lite images [11, 12, 17] or ground-based sky images [6] to extrapolate cloud motion based on
recordings at previous time steps. Ground-based images can provide a much higher temporal
and spatial resolution, but at the cost of much lower coverage.

Numerical weather prediction models attempt to model the state and evolution of the
atmosphere using partial differential equations based on the laws of physics. Examples of
numerical weather prediction models include the Global Forecast System (GFS) [9], the
Integrated Forecast System (IFS) [19], and the Weather Research and Forecasting (WRF)
Model [8].

The GFS and IFS models are both global models while WRF is a higher resolution,
mesoscale model. IFS is also an example of an ensemble model which runs multiple simula-
tions using slightly different initial conditions. This is used to help account for the uncertainty
of initial observations and the chaotic nature and sensitivity to initial conditions of weather
systems.

Hybrid models are used in an attempt to overcome limitations of methods using individ-
ual models. Examples of hybrid models include combining ARMA or ARIMA with neural
networks [16, 22], combining neural networks and fuzzy logic [4], and combining neural
networks with wavelet analysis [2, 5]

3 Data Sets

3.1 Global Horizontal Irradiance Data

The first data set consists of Global Horizontal Irradiance (GHI) data for a region surrounding
Hawaii for the years 2013 and 2014. GHI is the total solar radiation received by a surface
horizontal to the ground and is measured in watts per square meter (W/m2). The data
was provided by AWS Truepower. While the exact methods used to obtain the data are
not known, we do know that the GHI is estimated from satellite images using a method
described by [21].
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Figure 1: GHI map

00 15 30 45
08 x x x
09 x x x x
10 x x x
11 x x x
12 x x x x
13 x x x x
14 x x
15 x x x x
16 x x x x

Table 1: Times available for GHI data

The data set contains GHI information for a grid of 1,120 by 1,040 points at a 2 kilometer
resolution, centered over Hawaii. However, for this paper we will focus on a 36 by 29 grid
over Oahu, which is shown in Figure 1.

While the data set contains data for most of the day, we will focus on only the subset
between 8AM and 5PM Hawaii Standard Time (HST). The reason for this choice is that we
are guaranteed to have non-zero GHI throughout the entire year during this time interval.
Most of the data is provided at 15 minute intervals; however, there are some gaps of 30
minute intervals. Table 1 shows the times at which GHI data is available, within the window
in which we are interested. The rows identify the hour in HST and the columns identify the
minute within the hour. There is also some data missing throughout both years resulting
occasional gaps greater than 30 minutes and up to several hours.

We will use the following notation to represent the GHI at the grid coordinate (x, y) at
time t.

S(x, y, t)

While specific values are not of interest to us, this notation allows us to easily discuss relative
times and location. For example, S(x + 1, y − 1, t− 60) refers to the GHI at the grid point
one unit to the east and one unit to the south of (x, y) at the time 60 minutes before t.
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Name Description Units
PWAT Precipitable water kg/m2

RH Relative humidity %
TMP Temperature K

UGRD U-component of wind m/s
VGRD V-component of wind m/s
VVEL Vertical velocity (Pressure) Pa/s

Table 2: GFS variables

Figure 2: GFS map

3.2 Global Forecast System Data

The second data set comes from the Global Forecast System (GFS), which is a weather
forecast model produced by the National Centers for Environmental Prediction (NCEP).
The data consists of dozens of weather variables, some of which are available at multiple
altitudes. The variables that we are interested in are listed in Table 2. Throughout this
paper we will refer to these variables by the names listed in the table.

With the exception of PWAT, all the variables that we are interested in are available
at multiple altitudes. The altitude is measured by pressure altitude and in particular we
are interested in the data at 850 millibars, which is approximately 1500 meters. PWAT
represents the amount of water present in a column of the atmosphere, which is why there
is no data for different altitudes.

GFS data is available at several different resolutions across the entire globe. Historical
data is available at 1 degree or 0.5 degree resolution and more recent data is available at
0.25 degree resolution. We are only interested in the 1 degree resolution data for the years
from 2010 to 2014. The region that we are interested in is shown in Figure 2.

The data is available at 6 hour intervals. Specifically it is available for 00:00Z, 06:00Z,
12:00Z, and 18:00Z of each day.
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Figure 3: S(x, y, t) vs. S(x, y, t− 60)

4 1-Hour Ahead Solar Forecasting via Linear Regres-

sion

In this section we describe a method for making approximately 1-hour ahead predictions of
the solar irradiance at a given location. We will call the time for which we wish to predict
the GHI, time t. We will use information available to us at time t−n, where n is the number
of minutes prior to t at which we are making the prediction. Intuitively, one might expect
that the solar irradiance at t − n at the same location would be a good predictor for our
target. This is the basis on which we build linear regression models for forecasting GHI.

Linear regression is a method for modeling the relationship between a dependent variable
and one or more predictor variables. In our case, the dependent variable is S(x, y, t) and, in
the simplest example, the predictor variable is S(x, y, t − n). In this example with a single
predictor variable, we wish to create a model as shown in Equation 1 with constants c1 and
c0 that will minimize the sum of the squared residuals, by way of ordinary least squares.
The residual is the difference between the observed S(x, y, t) and the value estimated by the
linear regression model. This model will be based on all possible S(x, y, t) and S(x, y, t− n)
for the region surrounding Oahu (shown in Figure 1) during 2013.

S(x, y, t) = c1S(x, y, t− n) + c0 (1)

This can also described visually. Figure 3 is a scatter plot of the GHI for a given point at
time t versus the GHI at that same point at t−60 for a portion of the data set. The residual
is the vertical distance between a point and the line given by Equation 1. So the goal of a
linear regression is to choose c1 and c0 such that we minimize the sum of the squared vertical
distances.

The model described above relies on a few assumptions. We are assuming that the
GHI patterns are the same for all points on the grid, for all times of the day, and for all
days of the year. However, this is obviously not true. For example, during the mornings
GHI will generally trend upward while in the afternoons it will trend downward. While
these assumptions allowed us to make a simple model, we will show later that it results
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in relatively poor performance. Throughout the remainder of this section, we will discuss
various techniques to potentially increase the accuracy of our model. These techniques all
work independently of each other and can be used individually or in combination with each
other. First we will discuss including additional predictor variables, followed by partitioning
the data and creating separate models for each partition of data, and lastly we will discuss a
technique where we transform the data and use the transformed data to create the models.

4.1 Adding Predictor Variables

When using the simple model described above, there may be important information that is
not captured by using only a single predictor variable. We can add predictor variables by
either expanding temporally or spatially.

If we expand temporally, we would include more past data. Instead of using only data at
t− n, we can, for example, use [t− n0, t− n1, . . . , t− nm]. Since we are including additional
predictor variable, obviously our original model will no longer work. Instead, we will have a
model that looks like Equation 2 which uses data from k past times and will have constants
ck and c0.

S(x, y, t) =

(
m∑
k=1

ckS(x, y, t− nk)

)
+ c0 (2)

If we expand spatially, we include data from neighboring grid points. We define r as
the “radius” of the surrounding region, which will be centered on (x, y). The model is now
defined by Equation 3. Constants are not indexed by i and j.

S(x, y, t) =

(
r∑

i=−r

r∑
j=−r

ci,jS(x + i, y + j, t− n)

)
+ c0 (3)

We can also combine both of these techniques and expand both temporally and spatially.
The resulting model is given by Equation 4. We now index constants by i, j, and k.

S(x, y, t) =

(
r∑

i=−r

r∑
j=−r

m∑
k=1

ci,j,kS(x + i, y + j, t− nk)

)
+ c0 (4)

Figure 4 shows an example which uses both of these techniques. The red square in Figure
4c represents S(x, y, t) and the red boxes in Figures 4b and 4a are our predictor variables.

4.2 Partitioning Data

In the original model, we made several assumptions which led to a single model for all data.
However, it is unlikely that GHI patterns will be the same for all points on the grid, for all
times of the day, and for all days of the year. In order to account for such differences, we can
partition the data based on these differences and create separate models for each partition.
This partitioning can be either temporal or spatial.
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(a) t− n1: Predictors (b) t− n0: Predictors (c) t: Target

Figure 4: Predictors and Target

4.2.1 Temporal Partitioning

There are two main ways that we might partition the data temporally. We can partition
on either a daily or yearly scale. On a daily scale, we might, for example, want to create a
different model for each hour of the day, while on a yearly scale, we might create a different
model for each month of the year. It is also possible to combine both of these which would
leave us with a different model for each hour of each month.

While partitioning the data at this granularity could potentially provide more accurate
models, it also means that we will have less data to train each model and we will have many
more models. If we were to combine both hourly and monthly partitioning, we would end
up with 108 different models, each with approximately 108 times less data (9 hours between
8AM and 5PM; 12 months in a year).

Rather than partitioning by each hour, a more reasonable approach might be to simply
partition the data into morning and afternoon. This also has some intuitive justification
since there is a clear distinction in general GHI patterns in the morning and afternoon. In
the morning, we expect the GHI to generally be increasing, while in the afternoon it will
tend to decrease. The hope is that these patterns can be more accurately captured by the
linear regression models if they separated.

On the yearly scale, it is less obvious how to partition the data. Seasonal partitioning
might be a good candidate. However, since the seasonal patterns are not as distinct in Hawaii
as many other places we will focus on a bi-annual partition. We will refer to the combination
of winter and spring as “winter” and the combination of summer and autumn as “summer.”
While using equinoxes and solstices as the seasonal boundaries might provide slightly more
accurate models, for convenience, we will divide seasons on monthly boundaries. Each
season will consist of three months, starting with winter consisting of December, January,
and February and the rest of the seasons following in three month chunks.

4.2.2 Spatial Partitioning

In addition to partitioning temporally, we can also perform spatial partitioning. On a global
scale, it makes sense that, for example, the GHI patterns in Hawaii will be very different
from those in Alaska. However, since we are only considering Oahu, it is less obvious how
we might partition the data.

One way that we might partition the data is by land and ocean. This particularly makes
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sense for our application since there are obviously no rooftop solar panels or solar farms in
the ocean. Another, perhaps less obvious, way to partition the data is by elevation. There
are two main motivations behind partitioning by elevation. First, more of the population
lives at lower elevation. Therefore, there will likely be more rooftop solar panels in that
region. The second motivation has a meteorological basis; due to warm air rising along the
mountains, cloud formation is more likely at higher elevations as the air cools and condenses.

We obtained elevation data from the Google Maps Elevation API. From this we can easily
partition each grid point by elevation, but we can also use this to approximate which grid
points are on the land or ocean. We consider any point with an elevation of 0 meters or less
to be part of the ocean and any point with greater than 0 meters elevation to be part of the
land.

4.3 Data Transformation

In this section we describe a method for processing the GHI data which provides an alter-
native method to account for differences in time of day and location that does not reduce
the amount of data that we have to create the model as was the case with partitioning. The
transformed value is represented by the following notation.

Ŝ(x, y, t)

After we apply the transformation, the data can be used as before. For example, Equation
5 defines the linear regression model equivalent to the one give by Equation 1.

Ŝ(x, y, t) = c1Ŝ(x, y, t− n) + c0 (5)

Our transformation will be based on the deviation from some average value. Consider
the following scenario. Suppose that the GHI at some location is 500 W/m2. If this is in the
afternoon, then this might be a normal value for that time of day, so we might expect that
it will follow typical patterns. However, if this is in the middle of the day, then it might be
lower than we expect, so we probably would not expect it to follow typical patterns. This is
the motivation behind this model. We also take into account the fact that the typical value
at a given time of day might vary from one location to the next.

Following the reasoning from the example above, our averaging should take into account
both temporal and spatial information. This is accomplished by computing the average for
each grid point at each time of day. We use the following notation to represent the average
GHI for a given grid point at a time of day specified by hh:mm.

S̄(x, y, hh:mm)

The data transformation simply subtracts the corresponding average value from the actual
average. For example, Ŝ(x, y, 2013-01-01T12:00) = S(x, y, 2013-01-01T12:00)−S̄(x, y, 12:00).

Figure 5 shows the process visually. Figure 5a shows the data for one specific day at
noon and Figure 5b shows the average that was computed from all the data at noon. Lastly,
Figure 5c shows the deviation from the average for one specific day at noon, obtained by
subtracting the values in 5b from 5a. This is data that will be used for creating the linear
regression model.
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(a) Actual data for
2013-01-01T12:00HST

(b) Average for 12:00HST (c) Deviation from average for
2013-01-01T12:00HST

Figure 5: Process for computing deviation

4.4 Results

Due do the number of combinations that are possible as well as the number of parameters
that can be adjusted, it would be unreasonable to test all possible models. Also, due to our
limited data set, it would not make sense to try all possible combinations to find one that is
the best as it would likely be specific to our data set. Rather, it is more important to find
which techniques seem to reduce errors in general.

This section will describe the performance of a number of different models. Each model
is created using 2013 data only and predictions are made for 2014. It is important to note
that when applying the data transformation, the average is based only on 2013 and when
computing the deviation from the average, even for 2014 data, we will use the 2013 average.
The performance will be measured by mean absolute error (MAE). In other words, the
average of the absolute difference between our prediction and the actual irradiance. In the
tables listing the results, we will also report the standard deviation in parentheses.

Tables 3, 4, and 5 show the performance of our method as we increase the amount of
spatial or temporal data used. The labels on the top and left describe how many predictor
variables are used in each model. The spatial data is labeled as n × n which describes the
size of the surrounding region that we will use. The temporal data is labeled as a list of
times used, relative to the target time. “(DT)” indicates that our data transformation was
also used for that particular model.

From Table 3 we can see that the error of our model decreases consistently up to a 13×13
region. However, the improvement is largest when moving from 1× 1 to 3× 3 and anything
beyond 5 × 5 seems to have very minimal impact. We have not tested using regions larger
than 13× 13 so it is no clear what will happen beyond that point. However, we suspect that
at some point it will include too much information from too far away and it will begin to
degrade the performance.

Table 3 also shows the impact of increasing from 30 to 60-minute predictions. The result
is not very surprising. As we try to forecast farther into the future, the error increases.

Table 4 shows the impact of including more temporal data. What is interesting here is
that when we do not apply the data transformation, using up to 90 minutes of temporal
data does not have much impact, but using up to 120 minutes of temporal data reduces the
prediction error by a significant margin. In contrast, if we do apply the data transformation,
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[t-30] [t-30] (DT) [t-60] [t-60] (DT)
1× 1 109.16 (140.89) 89.83 (127.52) 149.66 (178.17) 109.18 (146.64)
3× 3 103.15 (133.08) 83.15 (119.87) 146.11 (173.45) 103.55 (140.32)
5× 5 101.96 (131.35) 81.65 (117.89) 145.38 (172.36) 101.99 (138.34)
7× 7 101.39 (130.57) 80.91 (116.89) 145.00 (171.82) 101.07 (137.20)
9× 9 101.13 (130.20) 80.53 (116.36) 144.82 (171.54) 100.90 (136.48)

11× 11 101.01 (130.03) 80.33 (116.06) 144.72 (171.40) 100.08 (135.98)
13× 13 100.95 (129.93) 80.21 (115.90) 144.67 (171.31) 99.78 (135.64)

Table 3: Increasing Spatial Data

1× 1 1× 1 (DT)
[t-60] 149.66 (178.17) 109.18 (146.64)
[t-60, t-90] 150.33 (180.29) 109.93 (146.96)
[t-60, t-75, t-90] 149.05 (180.93) 110.15 (147.89)
[t-60, t-90, t-120] 145.70 (177.52) 113.16 (150.09)
[t-60, t-75, t-90, t-105, t-120] 136.94 (172.04) 118.32 (156.83)

Table 4: Increasing Temporal Data

adding temporal data does not help and in fact increases error.
Table 5 shows the effect of including both temporal and spatial data. This table suggests

that the two factors work mostly independently of each other. Adding spatial data helps
in all cases, as it did in Table 3, and adding temporal data helps in the same way as it
did in Table 4. Specifically, if the data transformation was not applied, then the additional
temporal data seems to help

The results of applying temporal and spatial partitioning are shown in Tables 6 and 7.
These results are based on a model which uses a single predictor variable for 60-minute
forecasts. Table 6 shows the performance of various combinations of daily and yearly par-
titioning and Table 7 shows the performance for various spatial partitions. In addition to
the mean absolute error and standard deviation, we also report — in square brackets and
italics — the mean absolute error of the equivalent non-partitioned model, for the partition
in question. In particular, we use the results from the non-partitioned, non-transformed,
single predictor variable model and rather than looking at the error across all predictions,
we look at the error specifically for only morning hours, or only afternoon hours, etc. This

3× 3 3× 3 (DT)
[t-60] 146.11 (173.45) 103.55 (140.32)
[t-60, t-90] 141.27 (172.41) 105.69 (142.49)
[t-60, t-75, t-90] 140.50 (173.17) 106.45 (143.93)
[t-60, t-90, t-120] 134.95 (167.95) 108.82 (145.81)
[t-60, t-75, t-90, t-105, t-120] 130.94 (166.13) 114.53 (153.03)

Table 5: Increasing Spatial and Temporal Data
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Full Day Morning Afternoon
Full Year 149.66 (178.17) 109.65 (141.52) [144.17] 131.33 (163.59) [152.53]
“Winter” 144.38 (172.74) [145.06] 106.56 (138.74) [134.36] 127.13 (158.05) [150.55]

“Summer” 155.31 (183.12) [153.40] 112.64 (143.15) [154.05] 136.08 (169.39) [154.58]

Table 6: Temporal Partitioning

“Ocean” (elevation ≤ 0m) 152.31 (180.76) [152.78]
“Land” (elevation > 0m) 144.37 (172.98) [144.75]
0m < elevation ≤ 50m 146.95 (174.96) [145.81]

50m < elevation ≤ 100m 146.19 (174.15) [145.65]
100m < elevation ≤ 150m 146.68 (175.56) [146.78]
150m < elevation ≤ 200m 147.53 (176.12) [147.01]

elevation > 200m 140.90 (170.34) [143.32]
elevation > 500m 129.06 (159.73) [137.28]

Table 7: Spatial Partitioning

will allow us to see if the performance is truly improving or if it simply due to the fact that
it is naturally easier to predict for a particular partition.

We can see from Table 6 that temporal partitioning is useful in all cases except for the
“summer” partition. We can also see that partitioning by morning and afternoon reduces
errors much more than partitioning by seasons. This could be due to the fact that seasonal
differences are not very significant in Hawaii.

Table 7 shows us that spatial partitioning is not very useful for our data set. While,
in most cases, the partitioning does improve the error relative to the average error of the
original model, when we compare it to the error for only that partition (the number in square
brackets), the improvement is much less significant and in fact often performs slightly worse.
The one exception is when elevation is greater than 500 meters. However, that only accounts
for less than 10% of the total land and likely an even smaller portion of the population and
rooftop solar panels.

Table 8 contains the results of applying temporal partitioning as well as data transfor-
mation. Again we see that the “summer” partition performs worse while the others perform
better. However, the improvements are much less significant than applying those seen in
Table 6. This is likely due to the fact that the data transformation already captures the
same patterns that temporal partitioning tries to account for.

Full Day Morning Afternoon
Full Year 109.18 (146.64) 104.31 (140.41) [110.90] 101.16 (137.18) [108.27]
“Winter” 107.14 (145.49) [108.74] 101.10 (137.32) [109.91] 100.62 (137.57) [108.14]

“Summer” 111.58 (147.40) [109.62] 107.80 (142.51) [111.91] 101.95 (138.02) [108.41]

Table 8: Temporal Partitioning with Data Transformation
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Figure 6: PWAT event for 2014-01-01T00:00Z

5 Rare Weather Event Detection

In this section we describe methods for identifying “rare weather events” from GFS data.
We define an event simply as a grid of GFS data for a particular variable at a specific date
and time. For our purposes, we will focus on a 15° × 15° region, approximately centered
on Hawaii. Specifically, the northwest corner of the region will be at 30°N and 165°W and
the southeast corner will be at 15°N and 150°W. Figure 6 is an example of an event for the
region that we are interested in. It is important to keep in mind that while the region is 15°

× 15°, this leaves us with a grid of 16× 16 points.
Since each event consists of many elements of continuous data, it is very unlikely that

two events will be the same. If all events are distinct, then we have no way to distinguish
between rare and common events. In a sense, they are all equally rare. In order to have
a more meaningful distinctions of rare and common events, we must group similar events
together by discretizing the events. Once we have discretized the events, we identify a rare
event as one which has few occurrences.

5.1 Discretizing Events

Discretization is accomplished by first transforming the data into a more useful feature space
using either principal component analysis (PCA) or a discrete wavelet transform (DWT),
followed by rounding the transformed data until the events are no longer all unique.

The reason we perform the transformation first is that when looking at the unprocessed
data, we do not know which features are most important. Both PCA and DWT transform
the data in a way that allow us to hopefully perform the rounding without losing important
aspects of the event.
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5.1.1 Principal Component Analysis

Principal component analysis is a method for transforming the data into linearly uncorre-
lated variables called principal components. The transformation is defined such that the first
principal component will have the greatest variance, and each subsequent principal compo-
nent will have less variance than the previous. The hope is that if we discard later principal
components we will still keep the important features of the events.

PCA takes as input a n × p matrix X, where n is the number of samples in the data
set and p is the number of features per sample, and each row is a feature vector. In our
case each feature is the value for a GFS variable at a particular grid point. Since our data
is a 2-dimensional grid, we must transform it into a 1-dimensional feature vector. This can
be accomplished by simply appending all rows of the grid into a 1-dimensional vector. The
exact method for turning the grid into a 1-dimensional vector is not important as long as
one method is used consistently for all data.

As output, we are left with the transformed data as a n× p matrix T, where each row is
now principal components of the original vector. If we keep all principal components then
the rows will still be unique since we have not lost any information. By discarding principal
components we are essentially projecting the original data onto a lower dimensional space.
In our case, even after dropping all except the first principal component, all samples are still
unique.

Since we still cannot distinguish rare events, we can further reduce the amount of infor-
mation in the data by performing some kind of rounding or truncation of the first principal
component. The approach we took was to round down to the nearest multiple of some
rounding factor. For example, if our rounding factor is 7, anything in the range [7, 14) would
be rounded to 7, anything in the range [14, 21) would be rounded to 14, and so on.

This approach is limited by the fact that an appropriate rounding factor will depend on
the data. Depending on the input data, the range of possible values for the transformed data
could be arbitrarily small or large. If, for example, the transformed data is all in the range
[0, 5], then a rounding factor of 7 would round everything to 0. On the other hand, if the
range is [0, 5000], then a rounding factor of 7 may leave use with too many unique values.
In section 5.2 we will introduce a method for choosing a rounding factor.

5.1.2 Discrete Wavelet Transform

Discrete wavelet transform is another method for transforming a set of data. A major
difference between PCA and DWT is that DWT can be performed on a single sample in a
data set independently of any other samples. In contrast, PCA is dependent on all samples
within a data set and the results will vary if a subset of the data is used or if additional
samples are added to the data set. Another difference is that DWT can be applied to either
1-dimensional or 2-dimensional data.

In order to use a 1-dimensional DWT, we must convert the gridded data into a 1-
dimensional vector. In this case, the method we use to convert the data is important because
wavelet transforms operate on adjacent elements in the feature vector. So, as much as pos-
sible, we want to keep adjacent grid points adjacent within the resulting vector. This can be
accomplished by using the method described previously. That is, simply append each row
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of the grid, in order, into a single vector.
The result of a DWT is a set of approximation coefficients and a set of detail coefficients

where each set is half the size of the original. The process can be recursively applied to the
approximation coefficients until there is a single approximation coefficient and many detail
coefficients. This is a lossless process which means that all information is retained and we
can also reverse the process to get back our original data. This also means that the events
will still be unique. Unlike with our PCA method, we will not discard any data, but we will
perform the same form of rounding.

There are different wavelets that could be used. So far, we have only used the Haar
wavelet, which is the simplest possible wavelet.

5.2 Identifying Rare Events

In order to identify rare events we must choose a rounding factor f that we will use for
rounding the transformed data as well as a “rarity threshold” r which tells us how uncommon
an event must be in order to determine if it is rare. If a discretized event has fewer than r
occurrences, then those occurrences will be considered.

As we mentioned previously, the choice for f will depend on the input events and the
resulting transformed data. If the data has a large range of possible values, then a larger
rounding factor will be needed. The choice for r is somewhat arbitrary but should generally
be small. One way to choose r is to use a percentage of the total number of events. For
example, if we have 5000 total events, we can set r to 5, which is of 0.1% of the total number
of events.

Since f will vary depending on the input, we propose a method for automatically selecting
a value. We start by choosing a value for r as well as the approximate number of desired rare
events, e. As we increase f , more events will be grouped together since we are performing
more rounding. Since events are now more likely to be the same as others, there will be
fewer events that are below the rarity threshold, meaning that we will have fewer rare events.
Inversely, if we decrease f , fewer events will be grouped together and we will have more rare
events. In order to quickly find a value for f we can use a binary search until we have our
desired number of events. We say that e is the approximate number of desired rare events
because it may impossible to reach that exact amount. For this reason, we target e± 0.1e.

Rather than simply using all events for a single variable as input, we may be interested
in only events at a specific time. For example, the events that occur at 06:00Z (20:00HST)
may not be of particular interest to us for solar forecasting since there is no sunlight at that
time. Instead we might use only events at 00:00Z (14:00HST). In that case, we simply keep
only the events that we are interested in and perform the same procedure with appropriate
adjustments to r and e.

5.3 Multi-Day Events

Rather than only considering events as a grid of GFS data for a single point in time, we can
also consider an event to be a sequence of grids spanning multiple days. In order to reduce
the amount of data being processed, we have chosen to use grids at 24 hour intervals rather
than the 6 hour intervals provided. For example, a 2-day event might consist of data for
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(a) Original (b) Principal Component Anal-
ysis

(c) Discrete Wavelet Transform

Figure 7: PWAT event at 2014-11-05T12:00Z

2014-01-01T00:00Z and 2014-01-02T00:00Z. This means that we can have a different set of
rare events for each time of day provided.

Since we are now operating on multiple 2-dimensional grids, we perform the DWT on
each grid individually but perform the rounding on the entire set of coefficients from multiple
grids. We can do this for either 2-dimensional or 1-dimensional DWT (if we first convert the
grid into a 1-dimensional vector, as before).

5.4 Results

We found that transforming the data using PCA was not particularly useful as it would not
preserve interesting features. Instead it would tend to essentially group events based on the
average value across the grid. For example, Figure 7 shows an example event before trans-
formation and after applying either PCA or 2-dimensional DWT and performing rounding.
Although Figure 7c clearly does not look anything like an actual weather pattern because of
the constant values and sharp changes, it was able to capture the fact that there is a region
of low PWAT in the northwest and a transition to much higher values directly to the south
of that region. In contrast, Figure 7b looks more like a real weather pattern but does not
capture any of the interesting features of the original data. For this reason our discussion of
results will focus on DWT as our transformation method. It is not completely clear whether
1- or 2-dimensional DWT is better, however, since we are using 2-dimensional data, it makes
sense intuitively that the 2-dimensional DWT might be better. For this reason, our examples
will be based on 2-dimensional DWT.

We will begin by discussing general patterns that can be seen within events identified by a
single method and for a single variable as well as patterns across methods and variables. The
specific rare events identified by each method are generally not of particular interest at this
point in the research. However, we will discuss some specific examples which demonstrate
the patterns that we will discuss. The examples will also demonstrate the ability of our
methods to identify events which one might intuitively identify as rare.

One pattern that we found was that rare events often occurred consecutively or in close
succession. For example, the following is a partial list of the time stamps for rare events iden-
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(a) Consecutive PWAT events from 2013-11-15T12:00Z to
2013-11-16T06:00Z

→

(b) Discretized Event

Figure 8: Consecutive rare events, discretized as a single unique event.

tified using 2-D DWT on PWAT data, which demonstrates this point: 2013-11-15T12:00Z,
2013-11-15T18:00Z, 2013-11-16T00:00Z, 2013-11-16T06:00Z, 2013-11-17T06:00Z. It is often
the case for rare events which are immediately adjacent are the same when discretized. How-
ever, in cases where there is a gap between rare events, as is the case with the 2013-11-17T06:00Z
event, the discretized events are typically different. Figure 8 shows that the four adjacent
events in our example are in fact discretized to the same event. While the transformation
was not able to capture the fact that there was a large contiguous region of high PWAT
stretching from the southwest to northeast it was able to retain the general pattern of lower
PWAT in the northwest and southeast and higher PWAT in the southwest and northeast.

We also found that there were many similarities between these sequences of events and
the events identified by the multi-day method. That is, if the single-day method identified a
sequence of events as rare, the multi-day method would often identify an event which contains
the same events. For example, [2013-11-14T00:00Z, 2013-11-15T00:00Z, 2013-11-16T00:00Z],
which overlaps with the rare events in the previous example, was identified as a rare multi-day
PWAT event.

Another interesting result is that there were similarities between rare events identified
using different variables. This could either mean that the exact same time stamp was identi-
fied as rare using multiple variables or that there was a difference up to a few days. Table 9
demonstrates this pattern as well as further demonstrating the pattern of consecutive events.
The table shows which events are rare for each different variable from 2014-12-24T00:00Z to
2014-12-27T18:00Z. The events corresponding to the rows in bold are visualized in Figure
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PWAT RH TMP UGRD VGRD VVEL
2014-12-24T00:00Z x x x

2014-12-24T06:00Z x x x x
2014-12-24T12:00Z x x x x
2014-12-24T18:00Z x x x

2014-12-25T00:00Z x x x
2014-12-25T06:00Z x x x
2014-12-25T12:00Z x x x
2014-12-25T18:00Z x x x

2014-12-26T00:00Z x
2014-12-26T06:00Z x
2014-12-26T12:00Z x
2014-12-26T18:00Z x

2014-12-27T00:00Z x x x
2014-12-27T06:00Z x x x
2014-12-27T12:00Z x x x
2014-12-27T18:00Z x x x

Table 9: Rare events for multiple variables

9. Specifically we chose the events at 00:00Z for each day from 2014-12-24 to 2014-12-27 in
order to give an idea of what these rare events look like and how the change over time. It
is important to note that we have combined UGRD and VGRD into a single image, which
we have labeled “Wind.” However, as is shown in Table 9, UGRD and VGRD events were
identified separately. Although we combine multiple events of the same variable for multi-
day events, we cannot combine events of different variables because we cannot use the same
rounding factor.

From these images, one may start to get an intuitive sense of why these events can be
considered rare. However, it is important to remember that these events are only a small
selection out of 5 years of events so it is often not clear exactly why an event is identified as
rare or common without a more thorough understanding of the data and weather patterns
across all 5 years. For example, we can guess that the first TMP event on 2014-12-24T00:00Z
might considered rare due to the region of very low values in the northwest. However, it
is not as clear why the event on 2014-12-26T00:00Z is considered rare, since it is similar to
the two non-rare events in many ways. In particular, the average value across each event
seems similar, and there is clearly lower values in the northwest and higher values in the
southeast. Similarly for RH, the first two events are likely considered rare because they have
very high values throughout the grid. However, it is not clear why the other two events are
not considered rare since they also have high values throughout much of the grid.

On the other hand, some events can be easier to interpret. For example, the only VVEL
event which was identified as rare was 2014-12-25T00:00Z and that can likely be attributed
to the single point which has an unusually low value. In contrast, the other events consist
of very similar values across the entire grid.

We have shown in the examples in Figures 7 and 8 that our DWT method is able to
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Figure 9: Events for multiple variables from x to y
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capture patterns where there is a quick transitions from high to low values. This is likely
the case for the two rare PWAT events, where there is a region of very high values in the
east, and particularly southeast, and much lower values in the west. There is also a small
region of high values in the southeast for the two non-rare events, but these were likely lost
after rounding during the discretization process.

Our last finding was that there were not many similarities in the rare events identified
by different methods. For example, if we perform rare event detection using both 1- and
2-dimensional DWT with RH, there would be very little overlap between the rare events
identified by each method. There were some exceptions such as events which occurred
during a hurricane which would often be identified across multiple methods and variables.

6 Conclusion

In this paper we discussed a method for short-term solar irradiance forecasting using linear
regression as well as several techniques for improving the linear regression model.

We found that adding predictor variables was useful in reducing errors. In particular
including additional spatial data improved predictions in all cases that we tested, while
adding temporal data only improved predictions under certain circumstances. We used
regions up to 13× 13 grid points, but the rate of improvement was greatly reduced beyond
a 5× 5 region.

Partitioning the data and creating separate models for each partition was also helpful in
certain cases. Spatial partitioning turned out not to be very helpful except at high elevations
which accounts for only a small portion of Oahu. Temporal partition was more useful with
dividing the data into morning and afternoon partitions reducing the errors the most.

All of the above methods were out-performed by first applying a data transformation
which takes into account different patterns based on the time of day and location. In addition,
this can be further improved by including additional spatial data.

We also discussed a method for identifying “rare weather events.” Although much work
is needed in this area, we have provided some initial justification for our method through the
examples provided in Section 5.4. In addition to those examples, our method was often able
to identify hurricanes as rare events, which is certainly not common from a meteorological
perspective.

7 Future Work

There are many potential directions for future work. First, we can investigate more ways to
improve and refine our model. We can also apply our methods to different data sets to see if
it can be used in more general cases rather than specifically for Oahu. Lastly we can extend
our method for rare event detection and apply potentially apply it to our solar irradiance
forecasting.

One way that we might improve our linear regression model is to look into different ways
to transform the data. For example, we might want to focus on how the solar irradiance has
changed in the last few hours. Suppose we want to use S(x, y, t− 60) and S(x, y, t− 90) to
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predict S(x, y, t); rather than using the values directly like we would currently, we can use
S(x, y, t− 60) and (S(x, y, t− 60)− S(x, y, t− 90)) to help capture how the solar irradiance
has changed over time. There may also be other ways to transform the data that will take
into account the fact that the relationship between GHI from hour to hour is not quite linear.
If you look at a graph of the solar irradiance throughout a single day you will see that it
tends to be roughly parabolic rather than linear.

We could also incorporate GFS data to improve predictions. One way to do this is to
use GFS variables directly as additional predictor variables for our linear regression model.
We could also use the GFS data as a criteria for partitioning. For example, we might create
partitions based on the wind direction.

In terms of applying our methods to different data sets, one way to do this is to expand
to regions other than Oahu. The simplest approach would be to simply create a separate
model for each region. However, if a different region is similar, perhaps we could create a
single large model consisting of multiple regions. The most obvious next step is to try other
islands in Hawaii, but perhaps our methods will work well for other locations as well. It
might make sense to create a separate model for each location since the weather and climate
will be different. However, we found that our method of transforming the data was able
to account for both spatial and temporal patterns, so it may be possible to apply our data
transformation to data from all regions and create a single model.

Rather than scaling up, we could also scale down. For example, we can see if we can
use similar methods to create a model based on data from a ground based weather station.
Alternatively, rather than creating the model on the data from the weather station, we could
investigate the performance of our existing models using the weather station data as input.
Of course, we would not be able to use any model which incorporates spatial data. This
would be useful because there is much more data to train the model if we use the gridded
data rather than only the data from a single station. This would also potentially allow us
to use a single model to make predictions for different weather stations.

Lastly, we can further improve and study our rare event detection methods. First, we
must identify a way to determine which of our methods, if any, are able to accurately identify
rare or unusual weather patterns. We can also work toward using events which consist of
multiple variables. UGRD and VGRD is the most obvious candidate, but other combinations
of variables could prove to be useful. Another direction is to investigate predicting rare events
and using those predictions as part of our solar forecasting model. Rare events could be used
as a criteria for partitioning. For example, we could create separate models for days on which
a rare event occurred.
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