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ABSTRACT
The redshift of a galaxy or other astronomical object can
be used to determine its distance from Earth. This makes
redshift measurements a valuable asset for learning about
the large-scale structure of the universe. However, obtaining
accurate redshift measurement requires costly spectroscopic
data. Photometric redshift estimations provide a cheaper,
but less accurate alternative.

Many attempts have been made to provide accurate pho-
tometric redshift estimation. In this paper I propose a new
method for estimating photometric redshift. The proposed
method uses a multistage classification to allow for more ac-
curate redshift estimation. In the first stage, a multiclass
classifier is used to label each object based on which range
of redshifts the object belongs in. In the second stage, sep-
arate continuous classifiers are used for the objects in each
range.
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1. INTRODUCTION
Redshift is the effect of light from an object being shifted

toward the red end of the visible spectrum. This effect oc-
curs when an object is moving away from the observer. Due
to the Doppler effect, the wavelength of the light is increased
and the object appears redder. Redshift is quantified as the
relative distance between the observed and emitted wave-
length of an object and the value is called z.

Due to the expansion of the universe, cosmological ob-
jects that are sufficiently far from Earth are redshifted. The
amount of redshift is related to the object’s distance from
Earth. Due to this relationship, cosmological redshift is a
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valuable tool for learning about the large-scale structure of
the universe.

One method for determining the redshift of an object is
through spectroscopy. Spectroscopy is the study of light
dispersed into its components, such as through the use of a
prism. When light from an astronomical object is dispersed
in this way, there will be dark lines in its spectrum. These
dark lines are called absorption lines and they are a result
of certain wavelengths of light being absorbed by the chem-
icals that make up that object. Objects that are redshifted
will have these absorption lines at different frequencies. By
comparing the expected and observed wavelengths of the
absorption lines, you can determine how much an object is
redshifted. Spectroscopy provides an accurate measure of
redshift, but is also costly and time consuming.

An alternative to spectroscopy for determining redshift
is the use of photometry. Photometry simply measures the
amount of light from an object that passes through a variety
of filters. Using photometry to determine the redshift of an
object is cheaper and quicker, but also less accurate.

Photometric data cannot be directly used to determine the
redshift of an object. However, many attempts have been
made to estimate photometric redshift. A few examples of
attempted methods are Bayesian classifiers [1], decision trees
[4], artificial neural networks [3], and regression trees [2].
All existing methods which I have encountered have used a
single stage, continuous classification.

In this paper I will attempt to provide more accurate pho-
tometric redshift estimations by performing a multistage
classification. In the first stage I will perform a discrete
classification to label each object as being in one of several
ranges. In the second stage separate continuous classifiers
are used for each range. This method allows for more fine-
tuned estimation for each range.

In the first stage, a number of different classification tech-
niques can be used. The system currently supports naive
Bayes classification, k -nearest neighbor classification, sup-
port vector machines, and decision trees, however, any mul-
ticlass classifier could be used. Similarly, for the second
stage, any existing system for photometric redshift estima-
tion could be used. However, the system currently only uses
ANNz [3] which is an artificial neural network for estimating
photometric redshift.

The system will be tested on two datasets. The first
dataset is taken from the Sloan Digital Sky Survey (SDSS)
Data Release 1. It contains five bands of photometry data,
with errors, and spectroscopic redshift for 12,000 different
galaxies. This data is the test data provided with ANNz.



The second dataset consists of 1,000,000 galaxies taken from
SDSS Data Release 9. It again has of five bands of photom-
etry data, with errors, and spectroscopic redshift.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work to show what the current state
of photometric redshift estimation is. In Section 3, I de-
scribe the discrete classification process in more detail. In
Section 4, I describe the second step, which is the actual es-
timation of the photometric redshift. Section 5 will discuss
experimental evaluation of my estimation method. Lastly,
Section 6 will provide the conclusion.

2. RELATED WORK
Many different techniques have been used to attempt to

accurately estimate photometric redshift. A program called
PHoto-z Accuracy Testing (PHAT) [5] surveyed 16 different
systems which use a variety techniques. These techniques
can be broadly divided into two different groups. One group
uses an empirical approach which use only the magnitudes of
the filter data. The second group tries to fit spectral energy
distribution (SED) templates to the photometric data. A
spectral energy distribution is a graph of energy emitted at
different wavelengths.

There are a number of different template fitting approaches,
however, my focus is on the empirical approaches. Among
those, some of the techniques used include decision trees,
nearest neighbor fitting, regression trees, and artificial neu-
ral networks.

One of the empirical systems surveyed by PHAT was an
artificial neural network named ANNz [3] which I have in-
corporated into my own system. Although ANNz did not
perform as well as several of the other systems tested by
PHAT, the package is easily accessible and contains easy to
follow instructions, which made it a prime candidate for my
use.

To the best of my knowledge, all of the existing methods
use a single, continuous classifier to estimate the photomet-
ric redshift. None of the systems that I have encountered
have used an discrete approach and none have used a mul-
tistage approach.

3. MULTISTAGE PHOTOMETRIC REDSHIFT
ESTIMATION

In this system, I take an empirical approach to estimating
photometric redshift. That is, I only use the magnitudes
from photometric data, rather than a SED template fitting
approach. My method uses a multistage classification which
will be described in detain in the following subsections. In
the first stage, a multiclass classifier attempts to label each
object based on which range or redshifts it belongs in. The
second stage, a continuous classifier is used for each class
from stage one. The intuition behind this approach is that
if we broadly classify each object first, then we will be able
to get a better estimate of the object’s actual redshift by
using a classifier that is better trained for a certain range.

In the remainder of this section, I will use the following
notation. Each entry in the training data D will have the
following form

〈f0, f1, ...fk−1,∆f0,∆f1, ...∆fk−1, z〉

where k is the number of filters, fi is the data for a single
filter and z is the spectroscopic redshift. Each entry in the

test data T will have the same form, except the last element
is optional.

3.1 Discrete Classification
The goal of the discrete classification stage is to place each

object into a certain range before actually finding its photo-
metric redshift. For example, we may want to determine if
an object has a high, medium, or low redshift.

Dividing Test Data The user specifies the number of
classes n, that he wishes to divide the training data into.
The training data is then sorted and divided evenly into
n groups. Each object is labeled based on which group it
is in. This data can then be used by any supervised learn-
ing algorithm capable of multiclass classification. Currently,
the system supports several different classification methods.
They are naive Bayes classification, k -nearest neighbor clas-
sification, support vector machines, and decision trees.

There are other possible approaches to dividing the train-
ing data. For example, rather than evenly dividing the data,
you may want to divide it based on specific values. For
example, the user may specify that the data should be di-
vided into groups where z is either less than or greater than
0.3. This method would require that the user have a better
understanding of the test data, in order to create sensible
labels. However, it has the potential to create more mean-
ingful labels rather than randomly created ones. I have not
explored any alternative methods for dividing the training
data, but it is a possible topic of future research.

Training and Testing During the training process, the
training data D will be divided into n separate sets of train-
ing data Di, each with the appropriately labeled data. Once
the classifier has been trained, it can label the test data.
Given a set of test data T , it will output n new sets of test
data Ti, each containing only the data that has been deter-
mined to be within a certain range. If a z value is provided
with the test data, it will output the number of mislabeled
points.

3.2 Photometric Redshift Estimation
During the second stage, the system will output an actual

estimated photometric redshift value for each entry in T . In
this paper, I use ANNz to perform this estimation.

ANNz. ANNz is an artificial neural network for estimat-
ing photometric redshift. For both testing and training it
requires data in the same format as described in Section 3.
After being train and tested, it will output the estimated
photometric redshift with errors as well as the spectroscopic
redshift, if it was provided with the test data.

ANNz allows you to specify the number of hidden layers
that the network should have as well as the number of nodes
per hidden layer. You can train multiple networks with dif-
ferent random seeds, which can then be used as a committee
for estimating the photometric redshift.

ANNz requires both training and validation data, which
helps to avoid over-fitting the network. To obtain validation
data, I randomly select a portion of Di to form Vi. The
training data then becomes the set difference Ei = Di \ Vi.

Training and Testing. Each set of training data Di

is used to train m networks Nij , where 0 ≤ j < m. These
networks form a committee Ci which will be used to estimate
the redshifts for Ti.

4. EVALUATION



The discrete classification for the first stage was imple-
mented using an open source Python machine learning li-
brary called scikit-learn [6]. The second stage uses ANNz
with the same settings used in [3]. That is, it has two hid-
den layers, each with 10 nodes. A committee of five such
networks were trained, with approximately one-sixth or one-
fifth of the training data being used as validation.

Datasets. Two different datasets are used for testing.
Both datasets contain five bands of photometry data, with
errors, and spectroscopic redshift, which is considered to be
the ground truth. The list of filters used can be seen in Table
1. The first dataset contains 12,000 galaxies, taken from the
Sloan Digital Sky Survey (SDSS) Data Release (DR) 1. This
data is provided as an example by the ANNz package. The
second dataset contains 1,000,000 galaxies taken from SDSS
DR9. Both datasets contain redshifts ranging from between
0 and ≈0.6.

Name Central Wavelength (Å)
u 3551
g 4686
r 6166
i 7480
z 8932

Table 1: List of filters used by SDSS.

4.1 Discrete Classification
First I evaluate different methods of performing discrete

classification. For this test, I use the DR9 dataset. I ran-
domly selected 100,000 galaxies for training and another
100,000 galaxies for testing. The methods tested are naive
Bayes (NB), k-nearest neighbor (KNN), support vector ma-
chine (SVM), and decision trees (DT). I report the number
of mislabeled galaxies when dividing the training data into
n different classes, where 2 ≤ n ≤ 6. The results are shown
in Figure 1.

From these results, we can see that the accuracy of all
methods is diminished as the number of classes is increased.
We can also see that naive Bayes consistently performs poorly
for this task. The number of mislabels produced by naive
Bayes is approximately twice as many as those produced by
the support vector machine method for all cases. In the
best case, support vector machines mislabel approximately
5 percent of the test data.

4.2 Overall Performance
Based on the results from Section 4.1, I only use sup-

port vector machines to perform the discrete classification
in the following experiments. I first compare my multistage
estimation technique using two or three classes against the
standard ANNz, using the DR1 dataset. My last experi-
ment uses the entire 1,000,000 galaxy dataset to compare a
multistage estimation using two classes, versus the standard
ANNz.

SDSS DR1. The DR1 dataset provided with ANNz is
divided so that 5,000 galaxies are used for training, 1,000
for validation, and 6,000 for testing. To train and test the
standard ANNz, I simply used the data as given to train and
test the network. For the multistage estimation, I combined
the training and validation data to train the discrete classi-
fier. Once the training data has been divided, I randomly

Figure 1: Number of mislabeled galaxies (out of 100,000)
versus the number of classes, for four different classification
methods.

select one-sixth of the data for validation. For example,
when training the classifier for two classes, the 6,000 items
in the training data, are divided into two groups of 3,000.
From each set of 3,000 training items, I randomly select 500
to use as validation, and the remaining 2,500 are used for
training.

The number of galaxies from the test data that were mis-
labeled are listed in Table 2. As we expect from the results
from Section 4.1, using three classes produced more misla-
bels than only using two classes. However, a significantly
higher percentage of objects are mislabeled. Approximately
16 % of objects are mislabeled when using only two classes,
in contrast to the 5 % from the previous experiments. This
difference is likely due to the significantly smaller size of the
dataset.

Figures 2 and 3 shows the from results from this exper-
iment. Figure 2 shows the spectroscopic redshift (ground
truth) versus the estimated photometric redshift. Figure 3
shows the same data, except it shows the difference between
the two numbers.

When performing a multistage classification, you can clearly
see where the different classes are. These are the empty hor-
izontal bands than can seen in Figure 2 and the diagonal
bands in Figure 3. This is likely a result of the training data
having specific limits for the possible redshift values. This
means that the neural network will not be trained to classify
any value that is outside of its range of redshift. If the dis-
crete classifier misclassifies a point, the neural network will
be completely unable to accurately estimate its redshift. For
example, in Figure 2b, it seems that one class contains all
points with a redshift less than ≈0.1. Any object that was
incorrectly put into that class (i.e. had a spectroscopic-z
greater than 0.1) had an estimated photometric-z that was
close to 0.1.

One way to combat this problem might be to have some
overlap between the training data sets. For example, the
class containing objects with lower redshift could use 10%
of the training data from the class with the higher redshift
objects. This might allow the neural network to better han-
dle objects that were mislabeled. However, it is also possible



that it will cause it to perform worse for objects that are cor-
rectly labeled.

I also calculated the average percent error between the
spectroscopic-z and photometric-z given by

%error =
|zspec − zphot|
|zspec|

Before calculating the average error, I removed any outliers,
which I considered to be any object with an error greater
than 100%. This information is presented in Table 3. Both
multistage estimations perform similarly to each other, how-
ever, they both do worse than the standard ANNz.

Dataset, classes Mislabels
DR1, 2 951
DR1, 3 1647
DR9, 2 24033

Table 2: Number of mislabeled galaxies for each experiment.

Dataset, classes Outliers Average error
DR1, 1 146 16.170%
DR1, 2 185 18.425%
DR1, 3 152 18.787%
DR9, 1 11776 13.368%
DR9, 2 9823 13.365%

Table 3: Number of outliers and average error for each ex-
periment. One class refers to the standard ANNz.

SDSS DR9. I ran a similar experiment using the DR9
dataset. However, I only performed one multistage estima-
tion using two classes. The dataset was randomly divided
into 500,000 galaxies for training and the remaining 500,00
for testing. Once the training data has been divided, ran-
domly select 50,000 out of the 250,000 (one-fifth) to use as
validation data and the remaining data is used to train the
network.

The number of mislabeled galaxies is presented in Table
2. Approximately 5% of the galaxies are mislabeled, which
is comparable to the results from Section 4.1. This is likely
due to the fact that the dataset was much larger than the
DR1 data which allowed the classifier to be trained better.

The plots of spectroscopic-z versus photometric-z are given
in Figures 4 and 5. These results show similar patterns to
the DR1 experiment. You can clearly see what the range of
the different classes are.

Another thing to note is that neither the standard ANNz
or the multistage estimation give photometric redshift values
near 0.6 even though there is training data for that range,
as demonstrated by the fact that the spectroscopic-z values
go all the way to the end of the plot. Although it may not
be obvious from the plot, there is significantly less data in
this range which means that the network is not well trained
for objects in that range.

Table 3 shows the average error for the standard ANNz
and the multistage estimation. Again, outliers are assumed
to be anything with an error greater than 100%. This time,
the multistage estimation performs slightly better ANNz.
The average error is almost exactly the same, but the mul-
tistage estimation has fewer outliers.

5. CONCLUSION
This paper presents a novel method for estimating pho-

tometric redshifts. By first performing a discrete multiclass
classification, we can filter the data and pass it to an ap-
propriate classifier that is well trained for a specific range or
redshifts. One of the strengths of this system is its modu-
larity. It is fairly simple to adapt it do use different discrete
classification method or different photometric redshift esti-
mation methods. Experiments have shown that a naive ver-
sion of this system can perform comparably to one existing
photometric redshift estimation tool.

There are still many ways to improve this system. One
direction for improvement that could significantly improve
performance is to apply different methods to the second
stage. ANNz was far from the best system surveyed by
PHAT. There are a variety of alternatives that have a lot of
potential to improve the accuracy of the system.

The other direction for further research is to improve the
discrete classification. Currently, the system uses the very
naive approach of just dividing the data evenly. An alter-
native would be for the user to specify certain ranges. This
could allow a more advanced user with a better understand-
ing of the data, to select ranges that might be better suited
to train the second stage classifiers. Another approach would
be to use unsupervised learning techniques which might be
able to find patterns that are less obvious than just high
versus low redshift.

The last area for improvement is to improve the transition
from discrete to continuous classification. One possible solu-
tion that I mentioned earlier was to mix some of the training
data when training the continuous classifiers so that it may
be able to correctly estimate objects that were mislabeled
in the first stage.
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(a) Standard ANNz. (b) Multistage estimation with two
classes.

(c) Multistage estimation with three
classes.

Figure 2: Spectroscopic-z versus photometric-z for SDSS DR1.

(a) Standard ANNz. (b) Multistage estimation with two
classes.

(c) Multistage estimation with three
classes.

Figure 3: Difference between spectroscopic-z and photometric-z for SDSS DR1.

(a) Standard ANNz. (b) Multistage estimation with two classes.

Figure 4: Spectroscopic-z versus photometric-z for SDSS DR9.

(a) Standard ANNz. (b) Multistage estimation with two classes.

Figure 5: Spectroscopic-z versus photometric-z for SDSS DR9.


