
Gesture Recognition: Controlling Presentation
Software with Microsoft’s Kinect

Todd Taomae
Department of Information and Computer Sciences

University of Hawaii at Manoa
Honolulu, Hawaii

Email: ttaomae@hawaii.edu

Robert Ward
Department of Information and Computer Sciences

University of Hawaii at Manoa
Honolulu, Hawaii

Email: rward@hawaii.edu

Abstract—Recent advances in technology have created the
opportunity for new approaches to computer interaction. Ges-
ture recognition is one of these emerging forms of computer
interaction and the potential uses are varied. Some examples are
sign language recognition, socially assistive robotics, directional
indication through pointing, control through facial gestures,
alternative computer interfaces, immersive game technology and
affective computing. In previous studies gestures were used to
control a primary activity. In this study the control is in support
of the primary activity. To investigate the use of gesture control
in a secondary support role we have created a program that uses
the Microsoft Kinect and the associated libraries to allow a user
to control presentation software with gestures. In this support
role gestures must be carefully created to not interfere with or
limit the primary activity. At the same time the gestures must
not create false positives based on gestures used for the primary
activity which in this case is giving a presentation. Five control
gestures, forward one slide, backward one slide, forward five
slides, backward five slides, and a single gesture to start or stop
the presentation, were designed and a program was created to
detect them. Based on our observations during the development
process we created guidelines for gestures that are secondary
to the primary goal of the users. The gestures were tested for
accuracy of detection and the gestures usability using a group of
approximately forty users. The results were used to evaluate the
value of the guidelines created for their design.

I. INTRODUCTION

New technologies and tools have allowed gesture recog-
nition to become common both in the business world and
in research. Gesture Recognition has a great number of
potential uses such as sign language recognition, socially
assistive robotics, directional indication through pointing, con-
trol through facial gestures, alternative computer interfaces,
immersive game technology and affective computing. Another
area it has great potential in is remote control of computers
which will be the focus of this paper.

In November 2010 Microsoft introduced a new controller
for its Xbox game console. It became the fastest selling
consumer electronics device according to the Guinness Book
of World Records after selling 8 million in just two months.
While not designed for use with a computer, researchers and
hobbyists quickly attempted to unlock its impressive abilities
on a standard PC. To their delight they found it relatively easy
to set up, gather data with, and create applications that use its
abilities.

Microsoft quickly realized there was a potential market

for developers and users beyond the Xbox for which it was
designed. They created a Kinect software development kit to
assist people interested in developing gesture help for Windows
7 in June 2011. In May 2012, Microsoft released the next
version of the Kinect for Windows [4].

The Kinect software development kit (SDK) provides ac-
cess to low-level streams from the depth sensor, color camera
sensor, and four-element microphone array. It also has audio
processing capabilities such as acoustic noise suppression,
echo cancellation, beam formation to identify the current sound
source as well as speech recognition. The abilities provided by
the SDK that we specifically utilized are its skeletal tracking.
It provides the ability to track two people in its field of view
and provides joint information for twenty different joints for
each person. To investigate the abilities of the Kinect we have
created a program that uses the Kinect and the associated
libraries to allow a user to control presentation software with
gestures. The accuracy and usability of the gestures created
were then measured.The approach is different from previous
studies in that it looks at gestures used in support of the
primary goal of the activity. The presentation is the primary
goal of the user and controlling the viewer supports and is
secondary to that activity.

We created five control gestures: forward one slide, back-
ward one slide, forward five slides backward five slides, and a
single gesture to start or stop the presentation. These gesture
were detected using the Kinect hardware and the Kinect
SDK algorithmically. To evaluate both the detection of the
gesture and their usability we ran tests with approximately
forty different users. Based on our observations during the
development process we created development guidelines for
gestures that are secondary to the primary goal of the users.

II. BACKGROUND

A. Related Work

Several recent papers investigated the use of the Kinect as
an interface for a PC. For example Kam Lai, Janusz Konrad,
and Prakash Ishwar used the Kinect to detect hand gestures to
control applications. They concluded that hand gestures were
usable in controlled environments if they had data about the
subjects hands and performed training to improve recognition.
Their use of Euclidean distance metric also requires a great
deal of storage and is computational expensive [2]. To avoid



this we will use larger skeletal gestures the will not require
the same level of controlled environment.

We do not need to do data collection of gestures for training
purposes since Gu, Do, Ou and Sheng showed over eighty
percent recognition without training [1]. Although training did
raise accuracy of gesture recognition to over eighty percent.

Elimination of these complexities will allow us to use a
standard laptop to run our software, use the software in real
world environments and focus our efforts on understanding
what is required to design gestures.

B. Kinect Skeletal Tracking

The Kinect has many features, but the one that we focused
on is its skeletal tracking. Although the Kinect has the ability
to detect the position of up to six skeletons and track up to
two skeletons at once, in developing our gestures we assume
that there is a single user in view of the Kinect. If a skeleton is
tracked, the Kinect provides the 3D coordinates of 20 “joints.”
The joints that it tracks are the head, the shoulder center, the
spine, the hip center, and the left and right shoulders, elbows,
wrists, hands, hips, knees, ankles, and feet. The joints that we
are most concerned with are the hand joints, although we do
use a number of other joints to assist in our gesture detection.

Each joint can be either tracked or inferred. A tracked joint
is one where the Kinect knows the position, while an inferred
joint is one where the Kinect is guessing the position. There
are several reasons why the Kinect might not know the position
of the joint. The obvious reasons are that the joint may be out
of frame or occluded. Another reason is related to how the
Kinect detects and tracks the skeleton. In the default tracking
mode, which we used, the Kinect detects skeletons based on
their distance from the background. This works well in most
cases, but if, for example, the user is standing against a wall,
the Kinect will probably not be able to track them. This is
probably not an issue in almost all cases, but there is another,
more subtle problem that can occur. If the hand, for example,
is too close to the body, the Kinect wont be able to distinguish
it from its background, so the Kinect will not be able to track
it.

C. Gesture Development

Selecting a good gesture was a key part of developing
our gesture recognition software. This is especially true for
the forward one slide gesture, which would be performed
the most frequently. A good gesture should comfortable and
easy to perform. That means that is should not be physically
demanding and that it should not be too specific or constrained.
Another important consideration is that it is well connected
with the action it is meant to perform.

To understand the basic process of creating a gesture we
created a very simple proof of concept gesture. This gesture
simply looked for a change in the height of the hand from
below to above the head. Raising the right hand indicated
forward one slide and raising the left hand indicated back one
slide. In creating these gestures we were able to gain a basic
understanding of how to detect a gesture algorithmically.

Our testing of this gesture led us to guidelines for what
made a good gesture for our software. While flawed in many

ways it helped us understand the requirements of a usable
gesture. It was easy to have a detection when that was not
your intention, it was not symmetrical since left and right are
not intrinsically opposite, and it became draining to continually
raise your hand to move the slide forward. The following list
contains the general guidelines we created to help us develop
good gestures:

• Distinct from common motions used in primary activ-
ity.

• Natural and pleasant to use. Not physically difficult to
perform, particularly if it is a common gesture.

• Minimal precision required to perform gesture.

• Easy to remember. Good mapping from gesture to its
associated action.

• Related actions, such as forward and backward, should
have related gestures.

• Relatively easy to detect.

The final gesture that we selected for the forward slide
gesture was a clockwise circle performed with the right hand,
with the center of the circle at the height of the spine joint
that the Kinect provides, which is approximately at the users
waist. We then use the distance from the shoulder center to the
right shoulder to approximate half the users body width. The
center of the circle is moved to the right by this amount so that
the gesture does not need to be performed at the center of the
body. This point was chosen to be at a comfortable position
so that it does not put unnecessary strain on the user as they
perform the gesture multiple times throughout the presentation.
An alternative consideration was to center the point around the
elbow, but we found that this was not a reliable point since
the users elbow may move with their hand as they perform the
gesture.

The backward slide gesture is symmetrical to the forward
slide gesture. It is a counter-clockwise circle with the right
hand, centered around the same point. Selecting a symmetrical
gesture makes it easier for the user to remember the gesture
and helps to connect the gesture with the action it performs.

For similar reasons, the forward and backward five slides
gestures are very similar to their single slide counterparts.
We decided that the gesture should be the same, but with a
modifier performed with the left hand. One consideration was
to have the gesture performed with both hands. However, this
method had some drawbacks. We found that it wasnt as easy
to perform and using two hands does not correlate well with
going forward or backward five slides. The modifier that we
selected was to raise the left hand to the side of the head. To
aid in remembering the gesture, the user can hold five fingers
up.

In selecting the start and stop gesture, we decided that
it wasnt as important that the gesture be comfortable since
it would be performed very infrequently. We chose a single
gesture to represent either action because the user will only
ever need to perform one of the actions. If the presentation
has not started, the gesture will perform a start action. If the
presentation has started, it will perform a stop action. The
gesture that we selected was to have both hands to the side



of the head for at least one second. This gesture needed to be
fairly unique since a false detections would mean accidentally
stopping the presentation.

III. APPROACHES / METHODS

There are several potential approaches to gesture recog-
nition with the Kinect. Three that we considered were artifi-
cial neural networks, detection by example, and algorithmic
detection. Artificial neural networks are relatively complex
to implement, but they are very efficient and allow you to
easily implement new gestures. Detection by example uses
machine learning techniques to compare the users movements
to known forms. It is effective at handling complex gestures
and it tends to improve over time. However, it is also difficult to
implement and requires training for each gesture. Algorithmic
detection is the simplest of the three approaches because there
is no up front work. However, adding new gestures is more
difficult than the previous methods because a new algorithm
must be developed for each gesture. Algorithmic detection has
several other limitations and disadvantages. For example, it
works well for simple gestures but it can be very difficult to
accurately detect complex gestures. Another limitation is that
performance will degrade as the number of gestures increase
[4]. Despite these disadvantages, it was the best choice for our
needs because we are only detecting a few, relatively simple
gestures.

A. Detecting the Circle Gesture

The most important gesture to accurately detect is the
circle gesture because it is the one that would be used most
commonly during a presentation. For several reasons, we
decided not to actually detect a circle. First, it would be
difficult for users to create an accurate circle with their hand.
The gesture should be simple to perform without having to
worrying about performing a very specific movement. Second,
it would be difficult to detect algorithmically. We would either
have to constrain the users movements to fit nicely into our
algorithmic definition of what the circle should be, or the code
would quickly become very complex by trying to deal with all
the ways that a user might try to create a circle.

Our actual approach was to track the right hand as it
traveled through four quadrants, centered around a point lo-
cated at the right of the users waist. In order to complete
the circle gesture, the users hand must return to the starting
quadrant. Since the forward slide and backward slide gestures
are symmetrical, a single algorithm is used to detect the circle
and the direction is determined when the circle is complete.

In order to reduce the number of false detections, we
needed to add constraints to the gesture. One constraint that
was considered was to make the quadrants bounded so that the
user must perform the gesture within a certain area. However,
we decided that this would be too limiting and would put un-
necessary limitations on the user. The final constraints that we
put on the gesture was to have the circle start in one of the two
upper quadrants and to put a time limit on the gesture. These
two constraints were designed to limit false detections where
the user lifts their hand through two quadrants then happens
to lower their hand through the remaining two quadrants and
finally moves their hand into the starting quadrant.

B. Detecting the Five Slide Modifier and Start/Stop Gesture

Both the five slide modifier and the start and stop gesture
require us to detect a hand to the side of the head. The simple
solution is to just check that the position of the hand at a given
time is at a certain height. The problem with this approach is
that the Kinect does not always accurately track a joint, so we
cannot rely on using the position at a single point in time. To
combat this limitation of the Kinect, we make two changes to
the naive approach.

First, we define a range of acceptable heights that the hand
may be at rather than specifying an exact height. The range
that we defined was centered around the head joint provided
by the Kinect and has a range above and below that joint,
equal to the distance between the head and the center should
joint. The second change that we make is to keep a history
of positions of the hand and use the average position of that
history. This will handle situations where the Kinect may lose
tracking for a single frame and incorrectly infer the joint to be
somewhere outside of the acceptable range.

Keeping track of the average positions has a second advan-
tage. By keeping a long enough history, you can enforce that
the hand must be, on average, in a certain position for certain
length of time. This is used for the start and stop gesture where
the users hands must be near their head for at least one second
before activating the gesture. This prevents false detections
when the user happens to raise both their hands at the same
time.

IV. RESULTS

A. Method

Forty two test users were recruited to test the ability of
our software to detect the gestures we designed and the ability
of users to accurately reproduce the correct gestures. The
correct form of gestures were demonstrated to a group of
approximately fifteen users. Individually each user was asked
to reproduce each gesture for the recognition system. The
number of times required for the system to recognize the
requested gesture was recorded. If the user need to be reminded
of the correct gesture or be given a clarification this was also
recorded. After they had completed this part of the testing they
were asked out fill out a post test usability survey about their
impressions of the gestures.

Our approach requires some control on the test environment
and position of the user. The testing was performed in a well lit
room. The lighting was not altered and was similar to a normal
presentation setting. Users stood directly facing the Kinect at
a distance of approximately ten feet.

Testing was designed to examine two general areas, the
ability of the software to detect gestures and the usability of
the gestures. The goals of our gesture detection testing was to
examine the accuracy of the gestures, which we measured as
the percentage of time that the gesture recognized. The goals
of the usability testing was to examine the physical ease of
gestures, memorability of the gestures, quality of mapping of
the gesture to its associated action and the enjoyability of the
gesture.



(a) Action correlation. (b) Action memorability. (c) Gesture enjoyment.

(d) Action performance difficulty. (e) Gesture comfort. (f) Gesture symmetry.

Fig. 1: Usability survey results

B. Gesture Detection Rates

Table I shows a summary the results of our accuracy
testing. The first column is the gesture that we asked the user
to perform where “(3)” indicates that the user was asked to
perform the gesture three times in succession.

There are two potential ways detection can fail. Either he
user does not perform the correct gesture or the software fails
to detect a gesture the matches the required gestures. Our
approach does not attempt to separate these two types of failure
but the gestures were tested prior to user testing and they were
recognized consistently. From an overall quality perspective it
does not matter which reason the detection failed.

Other than start and stop the gesture all include the same
clockwise or counter clockwise gesture. This connected all the
gestures and made them easier to remember. In our testing we
altered which gesture was requested first to minimize ordering
bias. One group was asked to go backward first the other two
groups were asked to go forward first. However if you look at
the data you will notice that forward has the lowest accuracy
rate. To fully remove ordering bias we should have altered the
order with every other user since we did not have an even
number of groups. The ordering bias does seem to indicate

Gesture Average attempts % accuracy % reminder/clarification
Start 1.037 96 13
Forward 1.453 69 52
Forward (3) 3.377 89 0
Backward 1.151 87 13
Backward (3) 3.415 88 0
Forward Five 1.302 77 30
Forward Five (3) 3.509 85 0
Backward Five 1.283 78 0
Backward Five (3) 3.642 82 0
Stop 1.094 91 16

TABLE I: Accuracy of gesture detection.

that the gestures are learnable. After only a few reminders of
the earlier gestures and a few attempts they achieved a higher
detection rate.

To be viable for actual use it would be necessary to get
these rate into the upper ninety percent. Based on these early
results that does seems possible. A more robust detection
algorithm combined with a longer period of time using the
gestures would improve these results.

C. Usability

The post test survey was used to get user feedback on
the gestures. A survey or interview after less controlled use
of software as well as observation of users attempting to use
the software for an actual presentation would result in more
accurate feedback. While this is an imperfect way to gather
this information given our time constraints this was better than
gaining no insight into usability.

Fig. 1 provides a summary of the survey results. The survey
used a Likert scale, where a lower number represents a more
favorable response. In general the results for all gestures were
very similar.

Fig. 1a shows whether users felt that the gestures corre-
sponded with the action it activated in the software. The results
indicate that in general the user felt the gestures made sense
in terms of the action it activates in the presentation software.

In Fig. 1b we see the feedback about whether users felt
they could easily remember the action. Normally data would be
collected on whether users actual remember the correct action.
The results demonstrate that the user felt that they would be
able to remember the gesture and the task it activates in the
presentation software. The week after the test we informally
asked the testers if they recalled the gestures for each action.
Many of them did recall the gestures and corresponding action.



Fig. 1c the feedback on the user enjoyment of performing
each gesture. While enjoyment is not always analyzed, people
are more likely to use software if it is fun. While these results
are positive, the enjoyment metric garnered the least favorable
user feedback. It is not clear what might be done to make the
gestures more fun. It may be vital for gesture recognition for
their use to be enjoyable.

The results shown in Fig. 1d indicate that the users felt
the gestures were easy to perform. The inability to recreate
the gesture would certainly lead to frustration and make it the
software less effective for users.

Fig. 1e summarizes the user feedback on whether the
gesture was comfortable. If a gesture must be done several
times it is vital that it cause no physical discomfort. The
results for all gestures are similar. However the comfort
level for forward is the lowest. The forward gesture will be
the most common gesture used so it is important that the
reason for the result is investigated further and improved. It is
possible that the added constraint of starting at the top of the
circle decreased its overall comfort level. Further research is
necessary to determine the source of this result and to find a
possible solution to improve the comfort level of the forward
gesture.

Fig. 1f shows the feedback on gestures symmetry which
summarizes the users’ impression of the relationship between
corresponding gestures. The feedback clearly indicates that
users saw a clear connection between gestures. The forward
and backward gestures were seen as opposites and connected
well.

In addition to the quantitative questions, the survey also
asked users for comments on each gesture. There were several
comments that appeared more than once. Several users men-
tioned they didnt like the starting at the top of forward gesture.
This was a constraint we added to reduce false detections. As is
common in software development there is a trade off between
these two goals. However it may be possible to revisit this issue
once we have improved the overall quality of recognition.

Many users also did not like raising their hands to the
side of their head for the start stop gesture, describing it as
awkward. They also did not like having to hold this position
for several seconds. Again this was a constraint we added to
decrease potential false detections. In this case it may be better
to accept this less than perfect solution since users will rarely
use this gesture.

D. Observations

On top of the test data and survey results, we made several
informal observations of the users and their behavior as they
interact with the software. We noticed that the users appear to
quickly create an internal model of how the gesture detection
works. This can be interpreted in several different ways. One
interpretation is that the instructions were not clear enough and
it should be made more explicit how to perform each gesture.
However, an opposing view might be that the software should
work with slightly different interpretations of how the gesture
should be performed and without needing to give a detailed
explanation of each gesture.

There were three observations that we made which seemed
to indicate that the users were creating their own internal
model, which was often consistent across many users. First,
several users, on their first attempt of the circle gesture, would
make very slow and deliberate circles, probably in an attempt
to ensure that they make an accurate circle for the software
to detect. However, this actually has a negative impact on the
softwares ability to detect the gesture because of the time limit
that was put on the gesture. Another common behavior that we
observed in many users was that if their first attempt to activate
the circle gesture did not work, they would try to make very
large circles. This was particularly problematic when the user
attempts to perform the five slides gestures. We found that
users would occasionally activate the start and stop gesture
because the large circle would reach the height necessary to
be considered near the head. If the tests were to be repeated
we would be sure to record data on how often this occurs.
The last common behavior that we observed was that nearly
all users would stop between circles when asked to perform
multiple circle gestures in a row.

In addition to the survey results indicating that the users
thought the gestures relate well to the corresponding actions
and that the forward and backward slide gestures are symmetri-
cal, our observations support these results. After demonstrating
that the forward gesture is a clockwise circle, many users
seemed to immediately know that the backward gesture would
be a counter-clockwise circle. Another observation was that
when asked to perform the gesture, users rarely needed to be
reminded which direction corresponds to which action.

V. DISCUSSION

Overall our results are positive and promising. Our detec-
tions rates are fairly high and seem to improve as the user
becomes more comfortable and familiar with the gestures. The
gestures are also generally well received by the users, both in
terms of usability and relation to the actions they perform.
However, there are some obvious weaknesses and limitations
in our approach to both the detection and testing.

One limitation of our current detection method is its
simplicity. We currently do not use the depth information
provided by the Kinect, so there is still room to make the
gestures more robust. So far, we have been successful with the
algorithmic approach because we have a fairly simple set of
gestures. However, if we wanted to add more complex gestures,
our current approach would not be ideal. Even our simple
gestures became difficult to update as new requirements were
added.

Perhaps the greater limitation of our research is our testing.
Our testing methods were not as refined as they should have
been. One flaw is that we performed all the testing and
recorded the data ourselves. This could potentially lead to
unintentional biases. The other major flaw is that the testing
environment and procedures were not completely consistent
across groups or even individual users. One group was tested
in one environment with one person performing the demon-
stration, while the two remaining groups were tested in a
different environment with a different person performing the
demonstrations. There were no formally specified instructions
when asking the users to perform certain gestures, which



means that each user would have slightly different experiences.
All of these factors could have introduced errors into our
results. Despite these flaws in our methodology, the overall
trends were similar across groups, which may indicate that
their impact is minimal.

VI. CONCLUSION

Our proof of concept gesture was very simple and was
never intended to be used as one of the gestures but it pro-
vided invaluable insights into the requirements of an effective
gesture. The early usability test on this gesture being used
allowed us to understand its weaknesses and provided insights
that allowed us to create guidelines for a good gesture. These
guidelines underscore the importance that usability play in
the development of gestures. If you can recognize a gestures
consistently that is good but to be truly useful it must be
something the expected user of the gesture can use effectively.

The gestures received high usability rating from users. The
gestures were also recognized at a high rate although for a
usable tool the percentage of recognition would need to be
improved. This initial test of the gestures developed indicates
there is some merit in our guidelines for creating control
gestures in a support role.

In testing gesture recognition there are two potential failure
points the user does not perform the correct gesture or the
software fails to detect a gesture that matches the required
gestures. While we did not specifically do this in our testing it
may be necessary to have two stages of testing to help identify
the exact problem when a gesture is not recognized. In the first
stage an expert who knows exactly how to perform the gesture
would test the accuracy of the software in recognizing a gesture
correctly. In the second stage user testing could be used to find
issues with users ability to correctly do the gestures. Even with
a two stage process it is likely that testing the accuracy of
recognition of a gesture is so closely linked with usability that
they cannot be completely separated.

The tools and software for gesture recognition are becom-
ing more readily available and more powerful. In fact the tools
already available are quite extensive and powerful. This will
lead to gesture recognition becoming more common while it
will not replace other forms of input but will augment them.
For example the use of voice recognition in conjunction with
gesture recognition will be a powerful combination due to its
ability to provide context to a user’s desires.

VII. FUTURE WORK

There are many areas for future work of this research, but
they can be broadly divided into two categories. One approach
is to improve the software, either by improving the accuracy or
by enhancing it with different features. The second approach
for further development and research is to improve and further
evaluate the usability of the gestures.

We have considered several ways in which we may be
able to improve the accuracy of our gesture recognition.
The simpler of the two options is to better utilize the 3D
information that the Kinect provides. Currently, we do not
use the depth information in our gesture recognition. As a
result, the gesture recognition is most accurate when the user

is directly facing the Kinect. However, if we were to use depth
information we can improve the accuracy in situations where
the users body is not directly facing the Kinect. To improve
our recognition we could also use one or more of the joint
filtering techniques discussed in [3]. Some of the possible filter
techniques include moving average, double moving average,
exponential filter, double exponential filter, and Savitzky-Golay
filters. We also may attempt to use body kinematics to improve
recognition. This techniques uses physical characteristics of
joint movement such as speed and hinge joint limitation to
improve recognition [3]. Another, more general approach to
improving our gesture recognition is to use a non-algorithmic
approach. Although the algorithmic approach has worked well
for us so far, there are some obvious limitations. Both artificial
neural networks and detection by example tend to have better
accuracy, allow for more complex gestures, and allows gestures
to be added more easily than with algorithmic detection..

There are also several areas for enhancement of the soft-
ware that are related to its usability and features rather than
its accuracy. One obvious improvement is to allow the user to
use either hand to perform each gesture. Another improvement
might be to allow multiple users to be in view of the Kinect at
once. We could also incorporate voice or other forms of control
to improve the users ability to interact with the presentation
software. For example performing the gesture while saying
a number could be used instead of performing a modifier to
advance a certain number of slides.

Perhaps the more interesting direction for improving our
software is to improve our user testing and the overall usability.
There were some flaws and limitations in our user testing
methods. For example, as we mentioned earlier, there appears
to be some bias in the accuracy results caused by the order in
which we asked users to perform each gesture.

Another limitation of the testing is that it does not test
how well the users would perform the gestures in their
intended setting. Our tests were performed in a controlled
environment, where the user is solely trying to perform the
gestures. In a more realistic environment, there would perhaps
be uncontrollable external factors and the user would likely be
moving both their body and arms, which could lead to lower
accuracy and false detections. Our test also only provides a
snapshot of usability information. It would be preferable to
perform a longitudinal study where we revisit users to see
if the gestures are memorable and if they would be able to
perform the gestures more accurately with practice.

REFERENCES

[1] Gu, Y., Do, H., Ou, Y., & Sheng, W. (2012). Human gesture recognition
throug a Kinect sensor IEEE International Converence on Robotics and
Biomimetics (pp. 1379-1384). IEEE.

[2] Lai, K., Konrad, J., & Ishwar, P. (2012). A gesture-driven computer
interface using Kinect. Southwest Symposium on In Image Analysis and
Interpretation (pp. 185-188). IEEE.

[3] Microsoft. (2013, October 1). Skeletal Joint Smoothing White Paper.
Retrieved from http://msdn.microsoft.com/en-us/library/jj131429.aspx

[4] Webb, J., & Ashley, J. (2012). Beginning Kinect Programming with the
Microsoft Kinect SDK. Apress.


